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Cross-streamline migration of slender Brownian
fibres in plane Poiseuille flow
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(Received 3 September 1995 and in revised form 18 June 1996)

We consider fibre migration across streamlines in a suspension under plane Poiseuille
flow. The flow investigated lies between two infinite, parallel plates separated by a
distance comparable to the length of a suspended fibre. We consider the weak flow limit
such that Brownian motion strongly affects the fibre position and orientation. Under
these conditions, the fibre distribution, fibre mobility and fluid velocity field all vary on
scales comparable to the fibre’s length thus complicating a traditional volume-
averaging approach to solving this problem. Therefore, we use a non-local derivation
of the stress. The resulting fully coupled problem for the fluid velocity, fibre stress
contribution and fibre distribution function is solved self-consistently in the limit of
strong Brownian motion. When calculated in this manner, we show that at steady state
the fibres’ centre-of-mass distribution function shows a net migration of fibres away
from the centre of the channel and towards the channel walls. The fibre migration
occurs for all gap widths (0%λ% 35) and fibre concentrations (0% c% 1±0)
investigated. Additionally, the fibre concentration reaches a maximum value around
one fibre half-length from the channel walls. However, we find that the net fibre
migration is a relatively small change over the fibre’s uniform bulk distribution, and
typically the centre-of-mass migration changes the uniform concentration profile by
only a few percent.

1. Introduction

The subject of polymer migration across streamlines has been extensively
investigated and is thoroughly reviewed by Agarwal, Dutta & Mashelkar (1994).
Though experimental investigations are difficult to conduct, evidence has been
presented for migration in both cylindrical Couette and Poiseuille flows. Measurements
have shown that a polyacrylamide suspension under shear flow in a Couette device
demonstrated a 2% to 12% increase in polymer concentration in stagnant fluid
cavities near the walls (Metzner, Cohen & Rangel-Nafaile 1979). In Poiseuille flow of
the same suspension, Metzner et al. found a 5% to 30% increase in polymer
concentration in stagnant fluid cavities in the walls of their Poiseuille apparatus. Such
experiments imply that polymers near a wall will migrate through it when steric
constraints are relieved. In contrast to Metzner’s experiments, Ausserre et al. (1991)
reported a reduction in the concentration of xanthan near a capillary tube wall.
Concentration depletion layers are related to the slip of a fluid near a boundary but are
not indicative of net polymer migration (Schiek & Shaqfeh 1995).

To theoretically explain polymer migration in rectilinear flows Aubert & Tirrell
(1982) considered a bead-and-spring dumbbell in both Couette and Poiseuille
flows. They found polymer migration across streamlines only in the case of circular
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Couette flow. In plane Poiseuille flow, the bead and spring dumbbells were predicted
to translate with a centre of mass velocity less than the local fluid velocity, but no
migration across streamlines was found. Investigating the encapsulated FENE
dumbbell model in plane Poiseuille flow, Brunn & Kaloni (1985) predicted migration
towards and away from the channel centre depending on parameter choices within the
model. While the predicted migration effect was small, it resulted from the anisotropic
mobility allowed in the encapsulated FENE model. However, because the predicted
migration was very small and its direction depended on model parameters, Brunn &
Kaloni (1985) decided it was insignificant.

In this work we focus on slender rigid fibres as a simple polymer model possessing
an anisotropic mobility (Batchelor 1970). The slender, rigid fibres will be suspended in
a Newtonian solvent held between two infinite, parallel plates. Between the plates the
fluid is subject to an axial pressure gradient generating plane Poiseuille flow. We allow
the fibres’ centre of mass to diffuse and their orientations to change under the random
force of Brownian motion. The gap confining the fibre suspension is assumed to scale
on the length of a suspended fibre. Confinement to a small gap causes the velocity field,
fibre concentration field and fibre mobility to change on lengths comparable to the
fibres’ length (Schiek & Shaqfeh 1995). In this complex non-local environment, we self-
consistently calculate the velocity field, fibre stress and fibre probability density
function. From the probability density function, the fibres’ centre of mass distribution
and segmental distribution functions are calculated and show migration of the fibres
towards the channel walls.

2. Governing equations

Depicted in figure 1 is the problem geometry. Suspended in a Newtonian fluid are
n identical fibres per unit volume with a full length 2l and a diameter 2b. The fibres’
aspect ratio is considered large and thus its inverse is small, i.e. ε3 b}l' 1. The
dimensionless fibre concentration is c¯ nl $}ln [2}ε]. Using the vector x

c
to locate a

given fibre’s centre of mass position and the vector p to denote its orientation, we can
fully specify an axisymmetric fibre’s configuration. Our interest lies in the examination
of a fibre suspension confined to a narrow gap between two parallel plates. The
dimensional distance between the plates, h, is non-dimensionalized by the fibre half-
length, l, and denoted by λ. The coordinate system used herein specifies a fibre’s
configuration by a scalar position, z, and two orientation angles, θ and φ. The scalar
quantity z denotes the distance between the lower wall and the fibre’s centre-of-mass.
The azimuthal angle θ is defined as the angle the fibre’s orientation vector, p, makes
with the normal to the wall, x

$
. Finally, φ measures the angle between the projection

of the orientation vector p into the (x
"
,x

#
)-plane, denoted by p« in figure 1, and the

x
"
-axis.
Calculation of the fibre’s centre-of-mass distribution, denoted by P

cm
(z), requires

knowledge of the full probability density function, P(z, θ,φ), which determines the
probability of finding a fibre with a specific (z, θ,φ) configuration. Since our interest lies
in a fibre suspension under non-equilibrium conditions, the governing equations for
the probability density function will depend on the fluid velocity field. Owing to the
fibres in the suspension, the fluid velocity field is affected by the stress exerted by the
fibres on the fluid, or the fibre extra stress. Therefore, the governing equations for our
model problem describe the fibre’s probability density function, fluid velocity field and
the fibre’s extra stress. A detailed derivation and discussion of the governing equations
was completed by Schiek & Shaqfeh (1995) and will not be repeated here. In this work
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F 1. Geometry and notation used to describe a fibre suspension under flow between two
infinite, parallel plates.

we will quote the governing equations from that source while briefly discussing the
meaning of each equation. Thus, in the next subsection we discuss the equations
governing the probability density function while in the following subsections we
examine the fluid velocity and fibre stress relations.

2.1. Fibre configuration function : P(z, θ,φ)

To investigate the configuration of a fibre suspension subject to Brownian motion, an
assumption must be made about the size of the fibres, or equivalently the relaxation
time of the fibres relative to the relaxation time of the solvent. Physically, the fibres are
assumed to be small enough that Brownian motion quickly changes their position and
orientation, but large enough that impact of solvent molecules on the fibres can be
treated as a stochastic, random force. Such an assumption is quite reasonable
considering that in simple liquids it limits the fibre length to the order of microns. This
is the size of many naturally occurring macromolecules, e.g. the semi-rigid Xanthan
gum (Chauveteau 1982; Sorbie & Huang 1991), and the rigid molecules tropocollagen
(Stryer 1988) and fibrinogen (Weisel, Phillips & Cohen 1981). The assumption that the
fibres are small is equivalent to assuming that the relaxation time of the solvent is much
less than the relaxation time of the fibres (Chandrasekhar 1943; McQuarrie 1976). Thus
on time scales much larger than the solvent’s relaxation time, a Fokker–Planck equation
governs the probability density function for fibre position and orientation (Chan-
drasekhar 1943). A detailed derivation of the Fokker–Planck equation for this system
is given in Schiek & Shaqfeh (1995) (also see Nitsche 1991 and Nitsche & Brenner 1990,
but these are limited to fibre suspensions without flow). The problem geometry is
shown in figure 1, where an axial pressure gradient applied in the x

#
-direction produces

flow with a velocity denoted by ©u
#
ª. Under this geometry we assume that the fibre

concentration is small such that nl $' 1. Although this strictly limits this theory to
dilute fibre suspensions, the self-consistent solution method used here and in our earlier
work suggests that the theory is accurate for nl $C 1 (Schiek & Shaqfeh 1995).

The Fokker–Planck equation for the geometry shown in figure 1 is
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In equation (1), Pe is the Pe! clet number for this problem, defined as the ratio of the
shear rate at the wall, γ0 , to the fibre’s rotary diffusivity, D

r
.

The factor κ is a constant ratio of the fibre’s parallel diffusivity, Ds, to its rotary
diffusivity, D

r
, where the fibre’s half-length has been used to make this ratio

dimensionless. A similar constant ratio, ρ, is the ratio of the fibre’s perpendicular
diffusivity, Dv, to its parallel diffusivity. Both κ and ρ are easily calculated from the
slender-body theory presented by Batchelor (1970). Finally, the function g(z, θ) is the
average first moment of the velocity field along the fibre length. This is directly related
to the fibre’s rotational velocity, θ0 and φ0 , which are given by the equations θ0 ¯
cos θ sinφg(z, θ) and φ0 ¯ cosφg(z, θ)}sinφ (Brenner 1973). All lengths have been made
dimensionless with the fibre half-length l, time with (γ0 )−" and all velocities with γ0 l.

Originally derived for an unbound system, equation (1) does not contain information
about system boundaries. Enforcing zero particle flux through the boundaries on the
above Fokker–Plank equation can be achieved through the appropriate boundary
conditions. A no-flux boundary condition for rigid fibres must couple translational and
rotational motions, and a complete derivation is given elsewhere (Schiek & Shaqfeh
1995; Nitsche 1991; Nitsche & Brenner 1990). At present we simply quote the
condition for the lower boundary as

®κ#[1®ρ sin# θ]
¥P
¥z

³sin θ0Pe cos θ sinφg(z, θ,φ)P®
¥P
¥θ1¯ 0 on z¯³cos θ, (6)

and on the upper boundary as

®κ#[1®ρ sin# θ]
¥P
¥z

ysin θ0Pe cos θ sinφg(z, θ,φ)P®
¥P
¥θ1¯ 0 on z¯λycos θ.

(7)

In equations (6) and (7) the upper sign is used when 0% θ% "

#
π and the lower sign is

used when "

#
π% θ%π as required for proper coupling of centre-of-mass and rotational

flux.
To complete the specification of the probability density function we note that the

geometry dictates that P(z, θ,φ) be periodic in φ as

P(z, θ,φ2π)¯P(z, θ,φ). (8)

Finally, the probability density function must be normalized. Normalization is
discussed in detail in Schiek & Shaqfeh (1995) and in the present investigation we
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consider normalization subject to the constraint that the fibre suspension in the gap is
in equilibrium with an unbounded suspension of the same concentration. Under this
assumption, the probability density function has the form

P(z, θ,φ)¯ n}4π (9)

within all allowed fibre configuration states and zero outside the allowed configurations
when the suspension is not flowing, or Pe¯ 0 (Schiek & Shaqfeh 1995). In equation (9),
n is the number of fibres per unit volume in the unbounded suspension with which the
gap is in equilibrium. This normalization was determined by noting that the integral
of the probability density function over all allowed centre-of-mass locations and
orientations must equal the number of fibres in the suspension. Under flow, the
probability density will have the prefactor, n}(4π), multiplying a function of Pe, z, θ
and φ whose integral over all, z, θ and φ is required to be unity. More explicit details
on the use of this normalization will be given when solution of the governing equations
is discussed in §3.

For future reference, the formula used to calculate the fibre’s centre-of-mass
probability density function and segmental probability density function will be
presented. The centre-of-mass probability density function is derived from the full
probability density function by integration over all allowed orientations, i.e. all θ and
φ, for a given centre of mass location, z, namely

P
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dφ sin θP(z, θ,φ). (10)

The bounds of integration for the θ-integral depend on the centre-of-mass location and
are given by
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At any point, z, in the suspension there is a finite probability of a fibre segment
intersecting that point. Thus, we can also define a segmental probability density
function through the expression

P
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z"(z)

dz
eff&

θ
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θ
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dθ&#
π

!

dφ sin θP(z
eff

, θ,φ), (13)

where z
"
(z) and z

#
(z) represent the minimum and maximum centre-of-mass positions

within the allowed configuration space from which fibres can intersect the point of
interest z. In the bulk, z

"
(z)¯ z®1 and z

#
(z)¯ z1 since fibres one unit length away

can intersect the point of interest. Near a boundary, z
"

and z
#

are constrained to lie
within the natural domain of z ` [0,λ]. The functions θ

$
(z

eff
) and θ

%
(z

eff
) define the

minimum and maximum angles in θ that a fibre with centre of mass at z
eff

can have
and still intersect the plane of interest, z.

Because fibres change their configuration when the fluid surrounding them moves,
the governing partial differential equation for the probability density function and the
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no-flux boundary conditions depend on the fluid velocity. Since the fluid velocity is
assumed to change on the length scale of the fibre, the probability density function
depends on an integral average of the velocity through the function g(z, θ) in equation
(2). In the following subsection the equations governing the fluid velocity field are
summarized, as derived in our previous publication (Schiek & Shaqfeh 1995).

2.2. Momentum conser�ation and fluid �elocity : ©u
i
ª

The motion of the Newtonian fluid of our fibre suspension is governed by Cauchy’s
equation of motion; however, the presence of the fibres adds an additional stress term
and a body force term. The extra stress due to the fibres arises because the rigid fibres
cannot obey the Newtonian stress relationship of the solvent. Because we have
assumed that the fibres’ positions and orientations and influenced by Brownian
motion, the Brownian movement of the fibres imparts an additional force density on
the fluid. Schiek & Shaqfeh (1995) derived the following momentum equation for a
Brownian fibre suspension:

µ
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Quantities appearing in angle brackets are ensemble averaged over all possible
configurations of fibres within the suspension using the definition of an ensemble
average found in McQuarrie (1976). The ensemble-averaged fluid velocity is denoted
by ©u

j
ª, while the extra stress and pressure field are denoted by ©σ!

ij
ª and 0

respectively. The constant µ represents the viscosity of the pure Newtonian solvent
which is suspending the fibres. Finally, &

i
is related to the Brownian force through a

gradient of a potential, 5 (Doi & Edwards) :
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c
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In (15), k
B

is Boltzmann’s constant and T is the absolute temperature. To finish the
discussion of the governing equations, the extra stress generated by the fibres on the
fluid must be accounted for in the momentum balance of (14).

2.3. The fibre non-local extra stress : ©σ!
ij
ª

The non-local extra stress caused by the fibres at some point of interest, x, was
derived by Schiek & Shaqfeh (1995) as
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The domain of integration, Ω, refers to the complete set of orientations, p. Exclusion
of forbidden configurations (i.e. configurations that would place part of a fibre in a
wall) from the extra stress occurs through the probability density function, P(z, θ,φ).
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Since the probability density function is defined as zero for unallowed configurations,
any combination of centre-of-mass positions given by xξp or x®sp and orientations,
p, in (17) that is not an allowed configuration has no effect on the averaging. In (17),
the unit alternating tensor is denoted by ε

imn
. Finally W

"
(ξ ) and W

#
(ξ ) in (17) are

weighting functions defined as
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In the non-local extra stress, equation (17), the first two integrals arise from purely
hydrodynamic forces. The first integral represents extra stress caused by velocity
gradients parallel to the fibre’s major axis. In the limit of a uniform velocity gradient,
uniform fibre mobility and fibre concentration, this integral simplifies to the extra
stress in an unbounded suspension of slender, rigid, non-Brownian fibres (Batchelor
1970; Hinch & Leal 1972, 1975, 1976; Schiek & Shaqfeh 1995) as
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In (20), the angle brackets denote averages over the fibres’ orientation distribution
function.

The second integral in the definition of the extra stress, equation (17), also arises
from hydrodynamic forces, but is purely non-local in nature. To be specific, when the
fluid velocity gradient field changes on lengths comparable to a fibre’s length, a fibre
cannot rotate with the fluid. Rather, the fibre will rotate with some average of the
fluid’s vorticity over its entire length. Thus there will be relative motion between the
fibre and fluid causing an additional source of stress. The kernel of this integrand
selects components of the velocity gradient field which are perpendicular to the fibre’s
major axis. As the fluid velocity field becomes constant over the length of a fibre, this
integral vanishes.

The third term in (17) relates a general body torque, .
n
, experienced by the fibres

to the fibres’ extra stress contribution. Inclusion of a body torque allows inclusion of
Brownian motion in the extra stress, since the torque generated by Brownian motion
can be expressed as a gradient in a potential field which is proportional to the
probability density function (Doi & Edwards 1989). This is accomplished through (15)
and the expression

.
i
¯®ε

ijk
p
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¥5
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. (21)

The equations of §§2.1, 2.2 and 2.3 completely specify the rheology of a confined,
dilute fibre suspension under flow. In the next section the governing equations will be
simplified and solved in the limit of strong Brownian motion, i.e. Pe' 1.
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3. Solution techniques

Equations (1), (6), (7), (14) and (17) form a coupled set of integro-differential
equations, whose solution is non-trivial. Since the focus of this work is suspensions
dominated by Brownian motion, i.e. weak flow systems, where the Pe! clet number is
small, it is natural to seek a solution as a power series in this small parameter.
Expanding the probability density, fluid velocity and extra stress in terms of the Pe! clet
number as
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and substituting into the governing equations, we simplify the nonlinear products of
probability and velocity in (17) by separating such products at different powers of the
Pe! clet number.

The greatest advantage of this asymptotic expansion solution scheme is the
simplification that results in solving for the probability density function. As posed in
(1), the probability density function depends on the three variable coordinates, (z, θ,
φ), as well as the flow strength as measured by the Pe! clet number, Pe. The asymptotic
expansion method gives the form of the Pe! clet number dependence, for Pe' 1, while
simultaneously making the governing equations separable in the variable φ.
Substituting the expansion (22) into (1), (6) and (7) allow one to conclude by inspection
that the form of the probability density function to order Pe# is
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Without flow, when Pe¯ 0, the above expansion reduces to the equilibrium probability
density function given in (9).
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κ#[1®ρ sin# θ]
¥#(
¥z#


1

sin θ

¥
¥θ 9sin θ

¥(
¥θ :®

(

sin# θ

¯ $

#
sin θ[©u

#
ª(!) (z®cos θ)®©u

#
ª(!) (zcos θ)], (26)

subject to the boundary conditions

®κ#[1®ρ sin# θ]
¥(
¥z

ysin θ
¥(
¥θ

³sin θ cos θg(z, θ r ©u
#
ª(!))¯ 0 (27)

on z¯³cos θ and

®κ#[1®ρ sin# θ]
¥(
¥z

³sin θ
¥(
¥θ

ysin θ cos θg(z, θ r ©u
#
ª(!))¯ 0 (28)

on z¯λycos θ. Similarly, the boundary value problem for '
"
(z, θ) is

κ#[1®ρ sin# θ]
¥#'

"

¥z#


1

sin θ

¥
¥θ 9sin θ

¥'
"

¥θ :
¯ (cos θg(z, θ r ©u

#
ª(!))

¥(
¥θ


1

sin θ
g(z, θ r ©u

#
ª(!))(

$

#
sin θ([©u

#
ª(!) (z®cos θ)®©u

#
ª(!) (zcos θ)]* (29)



Cross-streamline migration of Brownian fibres 31

subject to the boundary conditions
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Calculation of the function ((z, θ) was presented in Schiek & Shaqfeh (1995).

Calculation of the centre-of-mass probability density function, equation (10), and the
segmental distribution function, equation (13), only depend on the order-Pe! term of
P(z, θ,φ) and the term '

"
at order Pe# because all other terms vanish when integrated

over the φ-domain of [0, 2π]. We proceed with the solution of the equations for
((z, θ), '

"
(z, θ), ©u

#
ª(!)(z) and ©σ!

#$
ª(!)(z) by transforming the θ-coordinate with

t¯ cos θ which linearizes the domain boundary of ((z) and '
"
from z¯ r cos θ r near

the walls to z¯ rtr. On the linearized domain finite differencing of the governing
equations reduces the system to a stiff set of linear equations. The linear set of
governing equations was solved using singular value decomposition under several mesh
refinements until the results were unchanged to at least one part in 10$.

4. Numerical results

Following the numerical calculation of the function '
"
(z, θ), application of (10)

allows one to calculate the fibre’s centre-of-mass distribution function. Plotted in figure
2(a) is the centre-of-mass distribution function for a fibre suspension of concentration
c¯ 1±00 and a gap width of λ¯ 5±0. The function is shown for a quiescent suspension
not under flow where Pe¯ 0 and for a system under flow where Pe¯ 10±0. Since this
function is symmetric about the gap’s centre, it is plotted for only half of the channel.
While the governing equations were solved assuming that Pe' 1, the solution shown
in figure 2(a) was calculated at a much higher value of Pe for two reasons. First, for
a series solution to be asymptotic, one does not require that the coefficients multiplying
each order solution are small, but rather requires that the product of the coefficient and
the solution at each order be small relative to the solution at the previous order (Erde! lyi
1956). Referring to our proposed series solution in (22), the series is asymptotic if
P(!)!PeP(") and PeP(")!Pe#P(#) which is true for Pe¯ 10±0. Secondly, because the
corrections to the centre-of-mass distribution function are small, plotting them at an
extreme value of Pe makes the changes more evident. Examination of figure 3 shows
that under flow the fibre’s centre-of-mass distribution decreases in the centre of the
channel and increases near the walls. The kink in the centre-of-mass distribution at
z¯ 1±0 is not an artifact of the calculations. At the dimensionless distance of z¯ 1±0,
which corresponds to a distance of one fibre half-length, the fibres can approach the
wall to a distance of O(ε) which as εU 0 appears as a fibre–wall contact (cf. figure 3).
Fibre–wall contact creates a sterically excluded region of fibre configurations near the
wall such that the fibre’s centre-of-mass distribution declines near the wall regardless
of the fluid motion (Magda, Tirrell & Davis 1988). The sterically excluded region near
the wall causes the fibre concentration to decrease and contributes to a fluid slip layer
(Schiek & Shaqfeh 1995). As figure 3 demonstrates, the migration of fibres during flow
causes a decrease in the centre of mass concentration in the centre of the channel with
an increase near the wall and a maximum at one fibre half-length from the wall.
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F 3. Steric constraints for a fibre in contact with a solid boundary.

Using (13), the segmental probability density function was calculated and is shown
in figure 2(b). As with the plot of the centre-of-mass distribution, P

sm
(z) was calculated

for a suspension of concentration c¯ 1±0 in a gap of width λ¯ 5±0 at Pe¯ 0 and 10±0.
Like the centre-of-mass distribution function, the segmental distribution function
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shows a decrease in the fibre segment density near the centre of the channel and an
increase near the walls when the suspension is under motion. Additionally, the changes
in segment density are small, but this is consistent with existing experimental evidence
of cross-streamline migration (Metzner et al. 1979).

For a clearer understanding of the origin of this cross-streamline migration we will
examine the O(Pe#) correction to the centre-of-mass distribution function. Shown in
figures 4(a) and 4(b) are the O(Pe#) corrections to the centre-of-mass distribution
function at a fibre concentration of c¯ 1±0 and gap widths of λ¯ 20±0 and 5±0
respectively. To make the functions in figures 5 and 6 directly comparable, they are
computed at the same volumetric flow rate, which ensures that for both figures the
same number of fibres are crossing the z-plane per unit time. As can be seen in figure
4(a), the correction to the centre-of-mass distribution function is large and positive
near the wall but decays to a shallow negative value in the channel’s centre. Though
slightly contracted, the correction to the centre-of-mass distribution shown in figure
4(b) for the narrower gap of λ¯ 5±0 follows the same pattern. It is large and positive
near the walls and decays to a shallow negative value in the channel’s centre.

The mechanism for this accumulation near the wall and depletion from the centre is
readily understood. Two features are required for migration to occur. First, the
suspended particle must possess an anisotropic diffusivity. Secondly, the velocity
field must vary to produce a position-dependent mean orientation. For a suspension
of slender, rigid fibres, the elongated bodies possess different diffusivities or drag
coefficients for motion parallel and perpendicular to their central axis. For slender
bodies, the parallel diffusivity is greater than the perpendicular diffusivity by
approximately a factor of 2 (Batchelor 1970). Additionally, a fibre’s rotational
diffusivity is larger than the ratio of the translational diffusivity and l #, as seen in (4),
allowing Brownian motion to alter a fibre’s orientation more rapidly than its centre of
mass position. Inspection of (1) and (4) shows that κ#( 0 is required for fibre
migration to occur. An anisotropic diffusivity which leads to a faster rotational
diffusion time scale relative to the translational diffusion time scale fulfils the first
requirement for migration (Nitsche & Hinch 1997). Near the channel edges, for all fibre
concentrations, the plane Poiseuille flow velocity profile is near that of a linear shear
flow (Schiek & Shaqfeh 1995) and thus the fibre’s most likely orientation is parallel to
the flow (and the walls). In the channel centre, the flow is plug-like at high
concentrations and even at low concentrations the shear rates are small (Schiek &



34 R. L. Schiek and E. S. G. Shaqfeh

30

20

10

0

Gap width,ì

0 10 20 30

0

20

40

60

(×10–3)

(×10–3)

 (a)

 (b)

S
pe

ci
fi

c 
m

ig
ra

ti
on

 b
ia

s
M

ig
ra

ti
on

 b
ia

s
c=1.00

0.75

0.50

0.25

0.10

10–2

10–3

10–4

10–5

Gap width,ì

0 10 20 30

35

F 5. (a) The migration bias as a function of gap width and fibre concentration. (b) The
migration bias per concentration as a function of gap width and concentration.



Cross-streamline migration of Brownian fibres 35

Shaqfeh 1995). Owing to Brownian motion and the very low shear rate near the
channel centre, fibres there will have a nearly random orientation distribution. Hence,
the nonlinear velocity profile causes a position-dependent mean fibre orientation
meeting the second requirement for migration. Considering diffusive motion
perpendicular to the bounding walls, the fibres near the walls will on average have a
lower diffusivity than the fibres in the channel centre since their most probable
orientation is parallel to the flow. Thus, fibres that diffuse from the centre of the
channel towards a wall encounter a velocity field that changes their mean orientation
to a configuration with a lower diffusivity perpendicular to the walls. Since the
translational and rotational diffusion time scales are different, translational diffusion
back to the centre of the channel cannot occur before a fibre can change its orientation.
Fibres that have migrated towards the walls acquire a lower diffusivity for motion
perpendicular to the walls and thus require more time to migrate back towards the
centre of the channel. Thus, fibres will accumulate near the walls (Nitsche & Hinch
1997).

Another measure of the tendency for fibres to migrate is the total positive area
beneath the O(Pe#) correction to the centre-of-mass distribution function. The
magnitude of this positive area is a direct measure of the probability for fibre migration
and we will refer to this area as the migration bias. In figure 5(a) the migration bias is
plotted as a function of total gap width and concentration. All the results in this graph
were calculated at a constant volumetric flow rate for the suspension, allowing direct
comparison between points at different concentrations and gap widths. The migration
bias is strongly dependent on gap width for small gaps, reaching a maximum around
λ¯ 4. For large gap widths, the migration bias approaches a constant value. Although
we have assumed that the suspension is dilute, the migration bias is not a linear
function of concentration. The nonlinear concentration dependence of the migration
bias is best demonstrated by the results for c¯ 1±00 and 0±75 in figure 5(a). If the
migration bias were linear in concentration then the lines for c¯ 1±00 and 0±75 would
not cross ; however at large gap widths the lines intersect.

To further investigate the concentration dependence of the migration bias, we can
consider the ratio of the migration bias to the concentration. This migration bias per
unit concentration or specific migration bias is plotted in figure 5(b) and it is a measure
of the strength or driving force behind migration. From figure 5(b), it can be seen that
the specific migration bias follows the same general trend as the migration bias, being
largest for gaps near λ¯ 4 and constant at large gaps. It is important to note that the
specific migration bias is greatest for the lowest concentrations investigated. Thus, the
driving force behind migration is strongest for dilute suspensions. However,
concentrated suspensions show a stronger migration bias as shown in figure 5(a)
despite having the weaker driving potential as seen in figure 5(b). Within our theory, the
primary effect of increasing the fibre concentration on the probability density function
is to change the mean velocity field. Dilute suspensions thus perturb the velocity profile
from its Newtonian form only slightly compared to concentrated suspensions. In a
Newtonian parabolic velocity field, once a fibre diffuses off the centreline, it
immediately has a lower effective diffusivity since the weak shear rate aligns the fibre
with the flow thus reducing its diffusivity. In a more concentrated suspension where the
velocity profile is plug like (Schiek & Shaqfeh 1995), diffusion off the centreline of the
channel alters a fibre’s effective diffusivity to a smaller degree because the local shear
rate is lower than in the dilute suspension, and thus the effective diffusivity will remain
somewhat higher.
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5. Comparison to local analyses

Recent work by Nitsche & Hinch (1997) examines the cross-streamline migration of
a dilute fibre suspension in plane Poiseuille flow. While our work examines rigorously
confined fibre suspensions under strong Brownian motion, or weak flow, the study by
Nitsche & Hinch focuses on fibres in a strong parabolic channel flow where Pe is O(1).
In order to calculate the centre-of-mass probability density function for PeCO(1),
Nitsche & Hinch (1997) simplify the no-flux constraints of equations (6) and (7) by
ignoring the orientation dependence and assuming a zero fibre centre-of-mass flux at
the channel walls. Additionally, they assume that the concentration of fibres within the
suspension is sufficiently dilute such that the fully developed velocity profile of the
suspension is parabolic. A reasonable comparison can be made between our results and
those of Nitsche & Hinch provided we make the following assumptions. First, to
account for the simplified boundary conditions used by Nitsche & Hinch, we must
assume that the channel width is large with respect to the depletion layers near the
walls. Secondly, we must assume that the suspension concentration is small so that the
resultant fluid velocity profile is parabolic. Computational resources limited the largest
gap width that we considered to λ¯ 35±0, and in order to achieve sufficient diluteness,
calculations were performed with the concentration parameter set to zero. With c¯ 0,
it is necessary to factor the concentration out of the probability density, allowing it
to be non-zero. Finally, Nitsche & Hinch (1997) provided their results at Pe¯ 0±5, 1±0,
2±0, 5±0 and 10±0. Since our theory was derived by assuming a small Pe, we compare
our results at Pe¯ 0±5, 2±0 and 5±0, with λ¯ 35±0 and c¯ 0 to theirs at the same Pe
in figure 6. In figure 6(a) where Pe¯ 0±5, both Nitsche & Hinch’s (1997) and our results
predict depletion from the centre of the channel and accumulation near the walls.
However, the net migration predicted is small for such a weak flow, amounting to only
40 parts per million near the wall. In figure 6(b) the centre-of-mass distribution
functions are plotted for Pe¯ 2±0. Although this Pe is O(1), our results compare very
well with those of Nitsche & Hinch (1997). Again, migration is predicted towards
the walls with a net relative change in the concentration profile of about 0±5%. At
Pe¯ 5±0, our weak flow theory over-predicts the centre-of-mass distribution as is
shown in figure 6(c). While our weak flow theory predicts a 2% change in the fibre
distribution function, Nitsche & Hinch predict only a 1% change. Over-prediction of
the net migration by the weak flow theory is expected in the light of Nitsche & Hinch’s
(1997) results where they show that, above PeE 3, migratory drift reaches a maximum
and then decreases as a function of Pe (cf. figure 6 in Nitsche & Hinch 1997).
Regardless of the assumptions and limitations, both our results and those of Nitsche
& Hinch demonstrate that an axisymmetric particle with an anisotropic diffusivity in
pressure-driven channel flow will migrate away from the centre of a channel and
towards the walls.

6. Conclusions

The primary motivation for this work was to demonstrate a mechanism for fibre
migration in systems with nonlinear velocity fields. We have shown that because of the
anisotropy of the diffusivity fibres will migrate out of regions of low shear to regions
of high shear. Though the small gap width dictated a non-local approach to our model
problem, this mechanism for migration is quite general, applying to any body having
an anisotropic diffusivity in a nonlinear velocity field. Although calculated corrections
to the centre-of-mass probability density function are small, they qualitatively show the
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experimentally verified migration of polymers towards the walls of the channel
(Metzner et al. 1979). While this work’s primary limitation is the restriction to weak
flows where Pe' 1, such a restriction allows us to rigorously include steric wall effects.
Imposition of the no-flux condition at the channel walls showed that the migration bias
depends strongly on gap width for small gaps and reaches a constant value at large
gaps. Our work also suggests that finite-Pe calculations for gap widths 0!λ! 20 may
prove important in understanding fibre migration under complex flow conditions.

E.S.G.S. would like to thank the National Science Foundation for support under
CPIMA Co-operative Agreement DMR-9400354-2, and the David and Lucile
Packard foundation for funding through their fellowship program. Additionally, the
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